Semantic Clustering of Genomic Documents Using Go Terms as Feature Set

نویسندگان

  • B. L. Shivakumar
  • V. Bhuvaneswari
چکیده

The biological databases generate huge volume of genomics and proteomics data. The sequence information is used by researches to find similarity of genes, proteins and to find other related information. The genomic sequence database consists of large number of attributes as annotations, represented for defining the sequences in Xml format. It is necessary to have proper mechanism to group the documents for information retrieval. Data mining techniques like clustering and classification methods can be used to group the documents. The objective of the paper is to analyze the set of keywords which can be represented as features for grouping the documents semantically. This paper focuses on clustering genomic documents based on both structural and content similarity .The structural similarity is found using structural path between the documents. The semantic similarity is found for the structurally similar documents. We have proposed a methodology to cluster the genomic documents using sequence attributes without using the sequence data. The sequence attributes for genomic documents are analyzed using Filter based feature selection methods to find the relevant feature set for grouping the similar documents. Based on the attribute ranking we have clustered the similar documents using All Keyword approach (KBA) and GO Terms based approach (GOTA). The experimental results of the clusters are validated for two approaches by inferring biological meaning using Gene Ontology. From the results it was inferred that all keywords based approach grouped documents based on the semantic meaning of Gene Ontology terms. The GO terms based approach grouped larger number of documents without considering any other keywords, which is semantically relevant which results in reducing the complexity of the attributes considered. We claim that using GO terms can alone be used as features set to group genomic documents with high similarity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Clustering in Latent Semantic Indexing

Document clustering is a widely researched area of information retrieval. The large amount of documents which must be handled needs automatic organizing. A popular approach to clustering documents and messages is the vector space model, which represents texts with feature vectors, usually generated from the set of terms contained in the message. The clustering based on the document-term frequen...

متن کامل

Semantic Preserving Data Reduction using Artificial Immune Systems

Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...

متن کامل

Big Text Data Clustering using Class Labels and Semantic Feature Based on Hadoop of Cloud Computing

Clustering of class labels can be generated automatically, which is much lower quality than labels specified by human. If the class labels for clustering are provided, the clustering is more effective. In classic document clustering based on vector model, documents appear terms frequency without considering the semantic information of each document. The property of vector model may be incorrect...

متن کامل

Statistical and Semantic Feature Selection for Text Clustering

Organizing textual documents by categorizing them is important and beneficial for information retrieval; but when it comes to clustering documents containing a huge number of terms, the task become challenged. Therefore, selecting effective features is essential for reducing the feature space dimensionality and improving the clustering performances. While numerous methods have been developed fo...

متن کامل

Clustering of Documents using Particle Swarm Optimization and Semantics Information

With the ever increasing volume of information, document clustering is used for automatic document organization so as to yield relevant information in an expeditious manner. Document clustering is an automatic grouping of text documents into clusters so that documents within a cluster have similar concepts. Representation of document is a very important step in any Information Retrieval (IR) sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012